Genetic evidence does not support direct regulation of EDNRB by SOX10 in migratory neural crest and the melanocyte lineage

نویسندگان

  • Ramin Mollaaghababa Hakami
  • Ling Hou
  • Laura L. Baxter
  • Stacie K. Loftus
  • E. Michelle Southard-Smith
  • Arturo Incao
  • Jun Cheng
  • William J. Pavan
چکیده

Mutations in the transcription factor Sox10 or Endothelin Receptor B (Ednrb) result in Waardenburg Syndrome Type IV (WS-IV), which presents with deficiencies of neural crest derived melanocytes (hypopigmentation) and enteric ganglia (hypoganglionosis). As Sox10 and Ednrb are expressed in mouse migratory neural crest cells and melanoblasts, we investigated the possibility that SOX10 and EDNRB function through a hierarchical relationship during melanocyte development. However, our results support a distinct rather than hierarchical relationship. First, SOX10 expression continues in Ednrb null melanoblasts, demonstrating that SOX10 expression is not dependent on EDNRB function. Second, Ednrb expression persists in E10.5 Sox10null embryos, demonstrating that Ednrb is not dependent on SOX10 for expression in migratory neural crest cells. Third, over-expression of SOX10 in melanoblasts of mice that harbor null or hypomorphic Ednrb alleles does not rescue hypopigmentation, suggesting that SOX10 overexpression can neither complement a lack of EDNRB function nor increase Ednrb expression. Fourth, mice that are double heterozygous for loss-of-function mutations in Sox10 and Ednrb do not demonstrate synergistically increased hypopigmentation compared to mice that are single heterozygotes for either mutation alone, suggesting a lack of direct genetic interaction between these genes. Our results suggest that SOX10 does not directly activate Ednrb transcription in the melanocyte lineage. Given that SOX10 directly activates Ednrb in the enteric nervous system, our results suggest that SOX10 may differentially activate target genes based on the particular cellular context.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The transcription factor Sox5 modulates Sox10 function during melanocyte development

The transcription factor Sox5 has previously been shown in chicken to be expressed in early neural crest cells and neural crest-derived peripheral glia. Here, we show in mouse that Sox5 expression also continues after neural crest specification in the melanocyte lineage. Despite its continued expression, Sox5 has little impact on melanocyte development on its own as generation of melanoblasts a...

متن کامل

Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling.

The transcription factor Sox10 is required for proper development of various neural crest-derived cell types. Several lineages including melanocytes, autonomic and enteric neurons, and all subtypes of peripheral glia are missing in mice homozygous for Sox10 mutations. Moreover, haploinsufficiency of Sox10 results in neural crest defects that cause Waardenburg/Hirschsprung disease in humans. We ...

متن کامل

Neural crest specification and migration independently require NSD3-related lysine methyltransferase activity

Neural crest precursors express genes that cause them to become migratory, multipotent cells, distinguishing them from adjacent stationary neural progenitors in the neurepithelium. Histone methylation spatiotemporally regulates neural crest gene expression; however, the protein methyltransferases active in neural crest precursors are unknown. Moreover, the regulation of methylation during the d...

متن کامل

The transcription factor Sox10 is a key regulator of peripheral glial development.

The molecular mechanisms that determine glial cell fate in the vertebrate nervous system have not been elucidated. Peripheral glial cells differentiate from pluripotent neural crest cells. We show here that the transcription factor Sox10 is a key regulator in differentiation of peripheral glial cells. In mice that carry a spontaneous or a targeted mutation of Sox10, neuronal cells form in dorsa...

متن کامل

HDAC1 and HDAC2 control the specification of neural crest cells into peripheral glia.

Schwann cells, the myelinating glia of the peripheral nervous system (PNS), originate from multipotent neural crest cells that also give rise to other cells, including neurons, melanocytes, chondrocytes, and smooth muscle cells. The transcription factor Sox10 is required for peripheral glia specification. However, all neural crest cells express Sox10 and the mechanisms directing neural crest ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2006